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We consider a reaction-diffusion system which models the gasless combustion of a soiid 
material. The system exhibits oscillating fronts, whose nature varies as a function of the 
parameters of the problem. The behavior of the solution along the bifurcation branches is 
studied numerically, by an adaptive Chebychev pseudo-spectral method in which [he coor- 
dinate system is adapted to follow the sharp oscillations of the front. As the bifurcation 
parameter is increased through a primary bifurcation point, the solution exhibits a transition 
from a steadily propagating front to a sinusoidally oscillating front. This front develops into a 
relaxation oscillation whose peaks become progressively sharper and steeper. As a secondar;, 
bifurcation point is exceeded, a period-doubling bifurcation occurs. 1’ 1987 Acndemx Press. Inc 

In this paper we consider a system of reactionPdiffusion equations which describe 
gasless, condensed phase or solid fuel combustion. In this type of combustion, the 
chemical reaction takes place in the solid fuel itself, which is transformed directly 
into solid combustion products without any gas phase formation. Condensed phase 
combustion is currently being studied as a new and potentially more effective means 

of synthesizing ceramic and metallic materials which have, e.g., greater tolerances to 
high temperature and superior mechanical and electrical characteristics. Due to the 
exothermic chemical reaction, a temperature front propagates from the high tem- 
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perature combustion products, to the low temperature unburned fuel. Previous 
results, both theoretical and experimental, have indicated that various modes of 
propagation are possible. In addition to uniformly propagating planar fronts, 
experimenters [l-4] also observed planar fronts whose propagation velocities are 
oscillatory in time, referred to as self-oscillatory combustion. Other modes of 
propagation, including spin combustion, in which a spiraling motion of a non- 
uniform front (one or more luminous points move in a helical fashion along the 
surface of a cylindrical sample) have also been observed. 

A theoretical analysis of the one-dimensional case was undertaken by 
Matkowsky and Sivashinsky [S] who showed that the self-oscillatory mode arose 
as a Hopf bifurcation from the uniformly propagating planar front, as a critical 
parameter p5, of the system, was exceeded. The parameter p was identified as the 
product of a nondimensional activation energy energy of the reaction, and a factor 
measuring the difference between the nondimensionalized temperatures of the 
unburned fuel and the combustion products. 

Matkowsky and Sivashinsky showed that the uniformly propagating planar front 
is stable for 1( < 1~~. For p > pc, they showed that the uniform front is unstable and 
perturbations evolve to the bifurcated state, i.e., to the pulsating propagating state. 
In their bifurcation analysis, they calculated the amplitude, frequency and velocity 
of the pulsating front. Such an analysis is necessarily valid only locally, in a 
neighborhood of the bifurcation point. To determine more global behavior, i.e., to 
determine the behavior of the system beyond this neighborhood, it is necessary to 
determine the bifurcation branch(es) numerically. To do so, we introduce an adap- 
tive pseudo-spectral method for the numerical solution of the one-dimensional 
problem. Employing this method we are able to show how the sinusoidal 
oscillations predicted by bifurcation theory develop into relaxation oscillations as 
we proceed to higher values of p. Finally, we are able to numerically identify a 
period doubling secondary bifurcation. The oscillations in the velocity exhibit sharp 
narrow spikes alternating with longer slowly varying behavior. The peaks of the 
oscillations become progressively sharper and steeper as p is increased. This 
behavior makes adaptive techniques particularly attractive. 

In our approach, we solve the problem as an initial boundary value problem, 
integrating in time until a stable oscillatory steady state is achieved. Thus we 
necessarily compute only the stable branches of the bifurcation diagram. Generally 
the solution reaches its steady state after a relatively short period of time, except 
near bifurcation points where much longer times are required to reach steady state 
conditions. 

We introduce an adaptive Chebychev pseudo-spectral method for the numerical 
discretization of the partial differential equations. The standard Chebychev method 
(see, e.g., Gottlieb and Orszag [6]) is modified to adaptively adjust the coordinate 
system, as the solution evolves in time. New coordinate systems are generated by an 
explicit transformation which is chosen so that a Sobolev-type semi-norm is 
minimized in the new coordinate system. In this way the spatial discretization error 
is reduced and the efficiency of the pseudo-spectral method is enhanced. 
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Relaxation oscillations have been found numerically for problems involving 
ordinary differential equations (see, e.g., [7,8] who employed an idea of [S]). 
Rogg [lo] and Smooke and Koszykowski [ 1 l] found examples of relaxation 
oscillations for one dimensional problems in gaseous combustion by employing a 
method of lines, followed by an ODE solver in time, and an adaptive finite dif- 
ference scheme, respectively. Margolis [ 121, employing a spline collocation method, 
found an example of a doubly periodic relaxation oscillation for a one-dimensional 
burner stabilized gaseous combustion problem. However. the mechanism by which 
the doubly periodic oscillation was generated, i.e., by secondary bifurcation, was 
not determined. Finally, Baer and Erneux [ 131 analytically described the develop- 
ment of relaxation oscillations from sinusoidal oscillations, for a class of ordinary 
differential equations characterized by two time scales. 

In Section 2 we introduce the mathematical model. In Section 3 we describe the 
numerical method including a brief description of the standard Chebychev pseudo- 
spectral method and our adaptive Chebychev pseudo-spectral method as weEI as 
details regarding its implementation. Our results appear in Section 4, and Section 5 
is a summary and conclusion section. 

2. MATHEMATICAL MODEL 

In this section we briefly discuss the mathematical model. We employ a 
generalization of the models employed in [S, 141, in which the effect of melting of 
one of the reactants is taken into account, and in which the reaction is cut off in the 
solid unburned fuel. Assuming the front propagates in the 1 direction, we let 
1= J(i) denote the position of the melting front at time F. If T and c denote the 
temperature, and the concentration of the limiting component of the reaction, 
respectivly, the model is described by the reaction-diffusion system 

where 

(2. I ) 

Here 1 denotes the thermal conductivity, .;i is the rate constant and p the heat of 
reaction. Because of melting, the rate constant is amplified by the constant #LX > 1, 
due to the increased surface to surface contact of the reactants. Upon melting the 
heat of fusion 7 is absorbed by the material, but is then released during the reaction 
process so that the product is in the solid phase. Thus behind the melting surface. 
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the heat of reaction is augmented by 7. i? denotes the activation energy and R the 
gas constant. Finally the function 

is introduced to cut off the reaction in the unburned region, to model the fact that 
the reaction does not occur significantly before melting. We will discuss the sen- 
sitivity of our results to the specific choice of the constant Z, and to the form of the 
cut off function, below. 

Across the melting surface there is a jump in the heat flux, due to the absorption 
of the heat of fusion necessary to cause melting. The velocity 6; of the melting 
surface satisfies 

iJi= -$- cm, (2.2) 
m 

where C, is the concentration at the melting surface and [p.*] denotes the jump in 
T-T across this surface. The boundary conditions for the system are given by 

c+ e,, T-t T,, as -7-t --a 

c-0, T-t& 
(2.3) 

as .?+ +‘x, 

where the subscripts u and b refer to unburned and burned, respectively. We 
observe that the burned temperature F,, is derivable from the time-independent 
solution of the problem as F,, = F’, + pcU. 

We nondimensionalize by introducing 

- > 0=2, 
p E N=- 

2 Tb 
1’=-7 

iJ RTbb’ 

The reference velocity 0 is the velocity of the uniformly propagating front in the 
asymptotic limit N $1. We also introduce the moving coordinate system 

2=x-d(t) (2.5) 

so that the position of the melting front is fixed at z = 0. 
In terms of the nondimensionalized quantities, and the transformation (2.5): the 

system (2.1) becomes 

(2.6) 
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subject to the boundary conditions 

Note that the boundary condition C -+O as I-+ +s, follows from (2.6). At the 
melting surface z = 0, the temperature 0 is fixed at 8,, and the velocity of the 
surface is obtained from 

CO,] + yC(0) 4, = 0. (-2.8) 

The quantity I1 = (la/s) exp( -E/Rp,) is unknown, and depends on the 
(unknown) velocity u. It can be determined by finding the solution corresponding 
to the steadily propagating front. An asymptotic (IV+ 1) expression for ~1 was 
derived in [ 141. For our purposes, however, it is not necessary to lind ‘4, since a 
particular choice of ,1 merely corresponds to a specific choice of length and time 
scales, and thus does not affect the properties of the oscillatory solutions. 

We note that the solution of our problem will be shown to exhibit bifurcation 
phenomena as the parameter p = d/2( 1 - M), where d = N( 1 - cr) and 

is varied. 
In order to have a model which is amenable to numerical computation, it is 

necessary to reduce the problem delined on the infinite domain, to one on a finite 
domain (z,, - -R). Thus we actually employ the boundary conditions 

C(z,) = 1, 8(r, j = 0, Q( ZR) = 1. (2.9) 

Below we will discuss the sensitivity of the computation to the choice of zL and sR. 

3. NUMERICAL METHOD 

In this section we discuss the numerical method. The section is divided into three 
subsections. In A we give a brief description of the standard Chebychev pseudo- 
spectral method. In B we describe our adaptive algorithm, while in C we describe 
details of the implementation which are specific to the problem described above. 

3A. Standard Pseudo-spectral .4lgorithm 

An extensive description of the well-known Chebychev pseudo-spectral method 
may be found in [6]. The brief description that follows is presented only to make 
the paper self-contained. To illustrate the method we consider the model equation 
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We assume that U(X, t) can be expanded as a finite sum of Chebychev polynomials 
as 

where 

T,(.x j = COS(H cos -lx j 

is the nth Chebychev polynomial. The coefficients a,(t) are determined by requiring 
(3.2) to exactly solve (3.1) at a set of collocation points (x,; j=O, I,..., J>. The 
standard collocation sequence is given by 

,.=co,” I J’ 
j=o, l)...) J. (3.3) 

Substituting (3.2) into (3.1), we obtain 

(3.4) 

The functions T;(X) and T:;(x) can be related to I-,!(x) by well-known recursion 
relations [6], and (3.4) can be rewritten as 

where the sequence (b,,} is determined by {a,,). a, 6, and the recursion relation. 
Finally, using the definition of T,, and (3.3). (3.5) can be written as 

J 

uI(xj, r) = 1 6, cos y= F(u(x,, t)q u(x,, t) ,..., u(.u,, t)). 
II = 0 

(3.6j 

This system can now be solved by advancing the solution in time at the nodal 
points. Thus the Chebychev pseudo-spectral method can be implemented by one 
FFT to obtain {a,> from { u(x,, t)}, a recursion to obtain {b,, > from {LI,), and 
another FFT to obtain {u,(.Y~, I)> from {b,,}. Alternatively we can construct a 
matrix which directly relates {u.,(xI, t)} to (u(x,, r)). The former implemention 
asymptotically requires O(J log J) operations, while the latter requires 0(J2) 
operations. Nevertheless, on vector computers, for certain J, it may be more 
efficient to employ the latter implementation. Clearly the choice of which implemen- 
tation to use depends on J, on the specific FFT employed and on the computer 
architecture. 

The method described above is a global method, using data at all points (,yi> to 
compute U, at any collocation point. This is in contrast to finite difference schemes, 
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which are local. It is known that for smooth functions, pseudo-spectral methods 
converge faster than O(J-“) for any r>O, in contrast to linite difference methods 
which converge as O(K’) for I’ fixed, e.g., 2 or 4, where n is the number of grid 
points. Finally, the pseudo-spectral method maintains spectral accuracy up to the 
boundaries, in contrast to finite difference methods which require special treatment 
near boundaries. 

3B. Aduptke Pseudo-spectral Algorithm 

The polynomial obtained from collocating at the sequence of points (3.3) is not 
in general the optimal interpolation for all functions U. It is well known that the 
optimal (in any given norm) sequence of interpolation points depends on the 
function itself [Is]. Intuitively it would be expected that for solutions with stee;, 
gradients which propagate in time, the deviation of (3.3) from the optimal 
collocation points will be strongly time-dependent. In this section we consider an 
algorithm to dynamically vary the collocation points according to properties of the 
solution as it evolves. 

Let I denote the interval [ - 1, 11. Consider the model equation 

24, = au,, + bu,, x E I. I3 7) 

Let @s, u) be a function such that for each value of the parameter vector o, 
q( ., a) is a univalent mapping of 1 onto itself. A specified functional form for q will 
be introduced below. The mapping 

s=q(s, a) (3.8) 

defines a family of coordinate systems which depend on a. IJnder the transfer 
mation (3.8 ), (3.7) becomes 

14,=u 7-7 
i 

1l.s.s 14,q"' 

I 
+/,ll", 

x4 4 : 4' 
(3.9 

We observe that the Chebychev pseudo-spectral method can be applied to (3.9) for 
any value of a. 

For any function t!(.y j, any weight function n(.~‘) > 0, and integer K> 0 we de5ne 

When K = 0, (3.10) is the L2 norm with weight M,(.Y). Let e,= 1: - L; denote the spec- 
tral interpolation error, where ui is the interpolant of I; at the collocation sequence 
(3.3). It is shown in [16] that for 06 i< K 
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where C is a constant and H*(X) is the Chebychev weight function 

bt-(sj= (1 -~~j-~!~, 

A similar estimate was proved in [17] for the error in approximating a model 
(hyperbolic) initial boundary value problem by the Chebychev pseudo-spectral 
method. 

The estimate (3.11) indicates that the spectral interpolation error, which is one of 
the components of the error in the Chebychev pseudo-spectral method can be 
reduced by working in a coordinate system in which some Sobolev-type semi-norm 
of the solution is reduced. This is the basis for our adaptive algorithm. 

Specifically suppose that at a given time t,, u(s, t ,) is an approximate solution of 
(3.7). For any coordinate system defined by a, let 

(3.12) 

In the original (x) coordinate system (3.12) can be rewritten as 

Z(a)=jd. 'cs,bt s ~,a))[Alu,,.u,'+u,x,,l'+Blu,u,l~+CI14(~]. j( ( (3.13) 

In (3.13) s(x, a) is the inverse of the mapping x= q(s, a) and x, and x,, can be 
evaluated as functions of x and a by explicit differentiation. We will choose a, 
which defines the new coordinate system, by minimizing the functional I(a). In 
practice, we add a penalty to Z(a) in order to prevent the Jacobian of the mapping 
from becoming too large. Specifically we add to I(a) the term ss(xO, a), where .yO is 
a fixed point (corresponding to the melting front in the application considered 
here). This prevents too many points from piling up near the front, with too few 
points included in the regions away from the front. Once a new coordinate system 
is determined, the solution is interpolated to the Chebychev collocation sequence 
(3.3) in the new coordinate system by using the global expansion (3.2). 

We now describe the adaptive algorithm: 

(i) integrate to t = t, in an initial coordinate system, 
(ii j find amin which minimizes I( a ), 

(iii) interpolate the solution to the Chebychev points in the new coordinate 
system by evaluating the Chebychev interpolant, 

(iv) integrate to t = t2, 
(v) go to (ii). 

The times t,, t2,... for which a new coordinate system is computed, can be chosen 
dynamically. We can trigger a search for a new coordinate system when some 
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functional monitoring the solution, changes by more than a prescribed amount 
from the previous time a coordinate system was found. For the problem considered 
here we have used both Id,1 and Z(a). Monitoring changes in I(a) is applicable to 
more general problems, e.g., gaseous combustion problems where the analog of a 
melting front does not exist. 

In practice we input two constants ci < 1 and cz > I and do not adapt as long as 
the inequality 

If amin) c, <-<Cl 
T 

is satisfied. Here 7 is the value of the functional I the last time a coordinate system 
was found. Values of C, h 0.7 and c2 -- 1.4 appear to be satisfactory. One can also 
adapt at specified time intervals. 

We have found that in practice several hundred time steps will occur before 
another search is required. Therefore the additional computer time required for the 
adaptive procedure is very small. The previous value of a is a very good guess for 
the new value of a. A GausssChebychev quadrature formula is used to compute the 
integrals in (3.12). 

Since the interpolation is done using the global Chebychev expansion the entire 
process preserves the spectral accuracy. It is known that the Chebychev interpolant 
can exhibit oscillations [6], due to the Gibbs phenomenon. In order to use the 
Chebychev interpolant to interpolate to the new collocation points, it is necessary 
to be certain that the interpolant is free of oscillations. For the problems considered 
here, this is in fact true. One reason is that the adaptive algorithm is designed to use 
coordinate systems in which the solution does not exhibit steep gradients. Of course 
other interpolation formulae could be used as well. 

It has been observed (see, e.g., [6] and [ 181) that the Chebychev pseudo-spec- 
tral method can be quite inaccurate when J is too small. As J increases beyond a 
critical value there is an abrupt decrease in the error and the computed solution 
becomes extremely accurate. Further increasing J does not lead to significantly 
greater accuracy. This is in contrast to finite differences where the errors change 
much more gradually as the number of grid point changes. For this reason the 
results of the adaptive pseudo-spectral algorithm may be considerably more 
dramatic than for adaptive finite difference methods. 

As the coordinate system is changed the clustering of the collocation points 
changes. It is conjectured that the convection time-step restriction can be related to 
the smallest distance between the collocation points [6]? although the Chebychev 
method is a global method and standard domain of dependence arguments are not 
valid. Employing this relationship, the time step can also be changed adaptivei) 
together with the coordinate system. 

A higher-dimensional extension of the method appears to be quite feasible, using 
any one of a number of existing programs which map the square onto itself; or 
alternatively by extending the mapping described below, to two dimensions. 
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3C. Details of the Implementation 

In this subsection we briefly outline some details of the implementation of the 
algorithm that are particular to the model described in Section 2. We first discuss 
the time differencing. 

Consider the model equation 

24, = 14,, + Bu, + R(u). (3.14) 

Here the coefficient B of the first derivative is a functional of 14 which corresponds 
to the front velocity 4, in our problem. It will be seen in the next section that 4, 
may be a rapidly varying function in time. 4, also depends on the solution in a 
highly nonlinear manner. For this reason we use a semi-implicit scheme which is 
implicit on the parabolic terms and explicit on the other terms. 

Specifically, assume the solution is known at time level n. We make a prediction 
at time level rl+ 4, 

At At 
II “f ‘12 = Un + ~ u’:: ‘,2 + - (B”u’:. + R(lr”)) 

2 
(3.15) 

and a correction to obtain u”+ ‘, 

Ii II + 1 =1r”+~(ll::I+~1:,j+nt (B’z+‘3~11:l+1:+R(~‘J+12)). (3.16) 

After the prediction (3.15), the front velocity (i.e., B”+ ’ ‘) is computed from its 
definition, and then employed in (3.16). The scheme (3.15), (3.16) is second-order 
accurate. In practice we solve the transformed equation (3.9). The matrix associated 
with the semi-implicit scheme (3.15) (or (3.16)) is factored each time a new coor- 
dinate system is computed. 

The time-step is limited by the convective stability condition which is discussed in 
[6]. The time-step is adaptively changed as the coordinate system is adapted and as 
d, changes. Specifically if cl, is the smallest distance between the collocation points 
in the coordinate system a, we assume 

(3.17) 

The assumption (3.17) has not been shown rigorously, but we have found that this 
is the time-step restriction for the adaptive algorithm employed on our model. In 
practice we require K ,z 0.7 for 1% errors due to the time differencing. Thus the 
time-step is limited by accuracy constraints rather than by stability. 
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We use a coordinate transformation of the form 

q(s, a) =z tan-’ cI, tan(t(s’- l)J))+l 

ct--s 3’ =- 
G!7s - 1 

r,>0, -1 <‘Y2< 1, s E I 

i3.i8) 

Other choices of y are possible. 
In the functional (3.13) the constants A, B, and C were chosen to be A = B = 1, 

C = 0. These values were not changed for any of the cases considered. Ciearly other 
choices are possible. Though we tested both the Chebychev weight function ir = 
(1 -x2)-L2 and the weight factor \L’= 1. the results did not seem to vary signifi- 
cantly. The results presented below all correspond to the Chebychev weight 
function. In practice the adaption is done only in the region behind the front since 
the solution changes much more rapidly in this region, and adaption does not 
appear to be necessary ahead of the front. In the functional I, only the non- 
dimensional temperature 6, and not the concentration C, is employed. 

4. RESULTS 

The results we present are designed to both demonstrate the effectiveness of our 
adaptive method and to illustrate the behavior of the solution beyond the 
neighborhood of the first bifurcation point, where analytical results are available. 
Throughout this section we employ the parameter values: N = 50, Y 2 1.7, 7 = 8.5, 
0, = 0.8. The bifurcation parameter ,H is varied by varying the temperature ratio E. 

44. .E(fkctiz?eness qf Adaptive .4lgorithm 

We first consider one specific case in order to demonstrate the effectiveness of the 
adaptive algorithm. Thus we consider the problem with ,U = 4.3679, corresponding 
to cr = 0.829. We apply the boundary condition (2.9) at zR = - zi = 8. In addition 
we take g= 1, which is equivalent to cutting off the reaction beyond yL, i.e., not 
cutting it off in the computational domain. These results are typical of results w-here 
the reaction is cut off within the computational domain. The stable solution is 
oscillatory and has begun to exhibit spikes. In the computation. we use the same 
number of collocation points on both sides of the melting front. The adaptive 
procedure is applied only behind the melting front, where temperature spikes occur. 

En Fig, 1 the front velocity is shown for tz (the number of collocation points on 
each side of the melting front) varying from 17 to 65. The adaptive algorithm was 
not used, so that the standard collocation points are employed. It is apparent that 
the solutions obtained with tz = 17, 25, and 33 are inaccurate. The agreement 
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FIG. 1. Velocity of the melting front for different numbers of collocation points. The adaptive 
algorithm is not used. p = 4.368; El, II = 65; 0, I? = 49; fI, n = 33, l , n = 25; 0, n = 17. 

between the solutions obtained with II = 49 and n = 65 is an example of the abrupt 
change in the convergence of the Chebychev pseudo-spectral method, once suf- 
ficient resolution is achieved, and that additional resolution provides no significant 
improvement in accuracy. 

In Fig. 2 we show the front velocity obtained by using the adaptive algorithm. 
The improvement in accuracy for the coarse grids is apparent. As a further 
verification of the numerical algorithm we plot in Figs. 3 and 4 the normalized tem- 
perature O(Z). The profile is shown at the time corresponding to the spike in the 
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FOG. 3. Temperature protile, B(z), at the instant that the velocity of the melting front spikes. Com- 
putations with n = 65 and n = 17 are compared. The adaptive algorithm is not used. Jo = 4.368; 3, n = 65: 
S’, n = 17. 

front velocity. In Fig. 3 we plot O(z) for II = 17, and n = 65 without using the adap- 
tive algorithm. In Fig. 4 we show 6(z) for n = 17 (adaptive) and n = 65 (non-adap- 
tive). The improvement in accuracy is again apparent. 

The results above demonstrate the effectiveness of the adaptive algorithm on this 
class of problems. We also point out that the steady oscillations obtained with the 
adaptive algorithm are insensitive to the choice of initial conditions. As an 
experiment we started with the smooth (but erroneous) solution obtained with 

FIG. 4. 
putations 
,z, n = 17. 

Temperature profile, e(z) at the instant that the velocity of the melting front spikes. Com- 
with n= 17 (adaptive) and n :=65 (non-adaptive) are compared. p =4.368; iJ, PI =65; 

58!,71:1-11 
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II = 25 and without using the adaptive algorithm. After switching on the adaptive 
algorithm and allowing the transient to decay, the solution displayed in figure 2 was 
obtained. 

4B. The Solution beyond the First Bifurcation Point 

We consider the model with z, = - 3, i.e., the reaction terms are abruptly cut off 
3 units ahead of the melting front. We have verified that the solutions are insen- 
sitive to the particular form of the cut off function, and are relatively insensitive to 
the position of the cut off in the range -5 d z, d - 2, i.e., anywhere from about 
15 % to more than 40 % of the computation domain. For a wider range of cut-off 
locations, the solution does change somewhat. For a fixed value of p, moving the 
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FIG. 5. Velocity of the melting front for different values of p: (a) p =4.205; (b) p = 4.283; 
(c) p = 4.294; (d) p = 4.365; (e) p = 4.454; (f) p = 4.459; (g) p = 4.460. 
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cut-off location closer to (away from) the melting front, tends to increase (decrease) 
the amplitude of the spike. For all choices of cut offs that we have tested, the 
qualitative behavior of the solution, as p increases, is the same. That is, the solution 
first exhibits a small amplitude sinusoidally oscillatory front, which develops into 
relaxation oscillations with progressively larger spikes and eventually into a period 
doubling bifurcation. In terms of the bifurcation diagram, with p as the abcissa. 
changing z, corresponds to a lateral shift. For any particular value of p, however, 
the solutions for different z, can differ markedly, since the amplitude of the 
oscillation is extremely sensitive to p. In all cases the computational boundaries 
were chosen at zR = - zL = 12, and the results obtained were insensitive to increases 
of zL orzR. 
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In Figs. 5a-g we plot the computed velocity of the melting front, over four cycles, 
for values of p ranging from 4.208 to 4.460. The corresponding range of r~ is 0.8355 
to 0.8250. We observe that stability is transferred from the steadily propagating 
front to the bifurcated oscillatory front for ,u > pi, where p1 lies between 4.270 and 
4.281. This compares well with the asymptotic theoretical prediction of 4.236 1141, 
which was computed for the case of infinite activation energy. The oscillations 
rapidly develop into relaxation oscillations with progressively sharper spikes of 
increasingly amplitude, as p increases. Stability is then transferred at a period 
doubling secondary bifurcation point pz which lies between 4.454 and 4.459. The 
growth of the larger spike is very rapid along the secondary branch. Since, in om 
method, we compute the solution of the initial boundary value problem and wait 

FIG. 6. (a) Velocity of the melting front plotted over one period p = 4.454. (b) Temperature protiles, 
Q(z), at selected times, ~=4.454. q ,r=r,; 13, ?=I,; C,t=r,; O,t=r,. 
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until it eventually equilibrates to its stable steady state, we necessarily compute only 
the stable branches of the bifurcation diagram. It is therefore difficult in general to 
identify the fact that a bifurcation has occurred. Our reasons for claiming that 
secondary bifurcation has occurred are that (i) the equilibration times become 
much longer near this point, as they should on theoretical grounds, (ii) the charac- 
ter of the solution has changed dramatically at the point, abruptly doubling its 
period, and (iii) the difference in the amplitudes of the larger and smaller spikes 
goes to zero, as p is decreased toward this point, as it should when a bifurcation 
point is approached from above. 

In Fig. 6a we show the front velocity, plotted over one period, for p = 4.454. In 
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-5.n . I I I 
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FIG. 7. Velocity of the melting front plotted over one period, p= 4.460. (b) Temperature profiles. 
fI(z),atselectedtimes,~=4.460. q ,t=f,; 0,t=t2; A,[=[,; +,r=r,; x,r=tj; G,f=f,; “,t=t,, 
El, t= lg. 
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FIG. 8. Temperature profile, O(z), for four different values of p(i at the instant thar the velocity of the 
melting front spikes. 0, ,V = 4.294; 13, IL = 4.368; L. p = 4.417; *. 1’ = 4.454 

Fig. 6b we show the temperature profile B(z) at four different times fir..., t,, during 
the cycle, as indicated on Fig. 6a. This is very close to the onset of period doubling. 
In Fig. 7a we show the front velocity, plotted over one period, for p =4.460. In 
Fig. 7b we show B(z) at eight different times, as indicated on Fig. 7a. In both cases 
the temperature spikes near the melting front, and a wave propagates outward 
toward z = + 3s. The wave is increasingly damped as z increases. 

In Fig. 8 we plot the temperature profile t?(z) for four different values of ,u, at the 
time of the spike. The profiles are all similar except for the amplitude and sharpness 

4.270 4.306 4.348 4.387 4.426 4.465 

P 
FIG. 9. Amplitude of fundamental obtained from Fourier analyzing melting front velocity over one 

period. 
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FIG. 10. Ratio higher harmonics to fundamental. 0, first harmonic; 13, second harmonic; A, third 
harmonic; l , fourth harmonic; 0, sixth harmonic; 0, seventh harmonic, V, tenth harmonic. 

of the spike. We have Fourier analyzed the melting front velocity for values of p 
beyond the first bifurcation point. In Fig. 9 we plot the amplitude of the fundamen- 
tal as a function of ,LL. The nearly vertical behavior near the bifurcation point is 
characteristic of the supercritical behavior of the Hopf bifurcation (see, e.g., [S]). 
The fundamental saturates as ,U increases. In Fig. 10 we plot the ratio of certain har- 
monics to the fundamental, again as a function of p. The behavior of the different 
curves near the bifurcation point is again characteristic of supercritical behavior. 
The growth of the higher harmonics as p increases is characteristic of relaxation 
oscillations. 

5. CONCLUSION 

We have exhibited the behavior of the solution as the bifurcation parameter ,u 
increases. The velocity of the front evolves from steady to oscillatory as p passes 
through the primary bifurcation point. The sinusoidal oscillations which occur very 
near the bifurcation point develop into relaxation oscillations, characterized by 
progressively sharper and narrower peaks. As a secondary bifurcation point is 
exceeded, a period doubling bifurcation is observed to occur. 

We remark that though there is an actual front, the melting front, in this 
problem, most of the action does not occur at this front, but rather behind the 
front, in a region where the reaction term is most important. The width of this reac- 
tion zone is inversely proportional to the activation energy, which is typically large 
for combustion problems. Indeed, most of the prior analytical work corresponds to 
an asymptotic analysis for large activation energy, so that the reaction zone is a 
narrow layer which in the limit collapses to a moving surface, termed the reaction 
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“front.” Thus, in this limit the distributed reaction is replaced by a localized reac- 
tion or heat source on this front, the strength of which is computed by the meth.od 
of matched asymptotic expansions by constructing separate expansions within and 
outside of the reaction zone. Of course, for finite activation energies, such as are 
considered in this paper, there is no reaction front proper, and the actual Arrhenius 
reaction term is employed. Nevertheless, since the activation energy is large, though 
finite, the solution exhibits “front like” behavior in the reaction zone. This can be 
clearly seen in Figs. 6b, 7b, and 8. Our adaptive pseudo-spectral method is effective 
in correctly resolving this behavior. 

Our results were obtained with an adaptive pseudo-spectral method, in which a 
new coordinate system is chosen to minimize a functional Z, which is a Sobolev-type 
semi-norm of the solution, in that coordinate system. The effect of the method is to 
redistribute the collocation points so that the spectral interpolant better represents 
the solution. In our method we have employed a fixed number of collocation 
points, which are distributed according to the adaptive algorithm. The method can 
be modified to adaptively add and remove collocation points according to the size 
of I. In subsequent publications we plan to adaptively add or subtract points in 
considering both gasless and gaseous combustion problems, in both one and higher 
dimensions. 
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